|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640 |
- ---
- layout: post
- title: Replacing Objects in Python
- tags: Python
- description: More reflection than you cared to ask for
- draft: true
- ---
-
- Today, we're going to demonstrate a fairly evil thing in Python, which I call
- _object replacement_.
-
- Say you have some program that's been running for a while, and a particular
- object has made its way throughout your code. It lives inside lists, class
- attributes, maybe even inside some closures. You want to completely replace
- this object with another one; that is to say, you want to find all references
- to object `A` and replace them with object `B`, enabling `A` to be garbage
- collected. This has some interesting implications for special object types. If
- you have methods that are bound to `A`, you want to rebind them to `B`. If `A`
- is a class, you want all instances of `A` to become instances of `B`. And so
- on.
-
- _But why on Earth would you want to do that?_ you ask. I'll focus on a concrete
- use case in a future post, but for now, I imagine this could be useful in some
- kind of advanted unit testing situation with mock objects. Still, it's fairly
- insane, so let's leave it as primarily an intellectual exercise.
-
- This article is written for [CPython](https://en.wikipedia.org/wiki/CPython)
- 2.7.<sup><a id="ref1" href="#fn1">[1]</a></sup>
-
- ## Review
-
- First, a recap on terminology here. You can skip this section if you know
- Python well.
-
- In Python, _names_ are what most languages call "variables". They reference
- _objects_. So when we do:
-
- {% highlight python %}
-
- a = [1, 2, 3, 4]
-
- {% endhighlight %}
-
- ...we are creating a list object with four integers, and binding it to the name
- `a`. In graph form:<sup><a id="ref2" href="#fn2">[2]</a></sup>
-
- <svg width="223pt" height="44pt" viewBox="0.00 0.00 223.01 44.00" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 40)"><title>%3</title><polygon fill="white" stroke="none" points="-4,4 -4,-40 219.012,-40 219.012,4 -4,4"/><g id="node1" class="node"><title>L</title><polygon fill="none" stroke="black" stroke-width="0.5" points="215.018,-36 126.994,-36 126.994,-0 215.018,-0 215.018,-36"/><text text-anchor="middle" x="171.006" y="-15" font-family="Courier,monospace" font-size="10.00">[1, 2, 3, 4]</text></g><g id="node2" class="node"><title>a</title><ellipse fill="none" stroke="black" stroke-width="0.5" cx="27" cy="-18" rx="27" ry="18"/><text text-anchor="middle" x="27" y="-13.8" font-family="Courier,monospace" font-size="14.00">a</text></g><g id="edge1" class="edge"><title>a->L</title><path fill="none" stroke="black" stroke-width="0.5" d="M54.0461,-18C72.2389,-18 97.1211,-18 119.173,-18"/><polygon fill="black" stroke="black" stroke-width="0.5" points="119.339,-20.6251 126.839,-18 119.339,-15.3751 119.339,-20.6251"/></g></g></svg>
-
- In each of the following examples, we are creating new _references_ to the
- list object, but we are never duplicating it. Each reference points to the same
- memory address (which you can get using `id(a)`).
-
- {% highlight python %}
-
- b = a
-
- {% endhighlight %}
-
- {% highlight python %}
-
- c = SomeContainerClass()
- c.data = a
-
- {% endhighlight %}
-
- {% highlight python %}
-
- def wrapper(L):
- def inner():
- return L.pop()
- return inner
-
- d = wrapper(a)
-
- {% endhighlight %}
-
- <svg width="254pt" height="234pt" viewBox="0.00 0.00 253.96 234.00" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 238)"><title>%3</title><polygon fill="white" stroke="none" points="-4,4 -4,-238 249.96,-238 249.96,4 -4,4"/><g id="clust3" class="cluster"><title>cluster0</title><polygon fill="none" stroke="black" stroke-width="0.5" points="8,-8 8,-82 78,-82 78,-8 8,-8"/><text text-anchor="middle" x="43" y="-66.8" font-family="Courier,monospace" font-size="14.00">d</text></g><g id="node1" class="node"><title>obj</title><polygon fill="none" stroke="black" stroke-width="0.5" points="245.966,-153 157.943,-153 157.943,-117 245.966,-117 245.966,-153"/><text text-anchor="middle" x="201.954" y="-132" font-family="Courier,monospace" font-size="10.00">[1, 2, 3, 4]</text></g><g id="node2" class="node"><title>a</title><ellipse fill="none" stroke="black" stroke-width="0.5" cx="43" cy="-216" rx="27" ry="18"/><text text-anchor="middle" x="43" y="-211.8" font-family="Courier,monospace" font-size="14.00">a</text></g><g id="edge1" class="edge"><title>a->obj</title><path fill="none" stroke="black" stroke-width="0.5" d="M64.8423,-205.244C88.7975,-192.881 128.721,-172.278 159.152,-156.573"/><polygon fill="black" stroke="black" stroke-width="0.5" points="160.422,-158.872 165.883,-153.1 158.014,-154.206 160.422,-158.872"/></g><g id="node3" class="node"><title>b</title><ellipse fill="none" stroke="black" stroke-width="0.5" cx="43" cy="-162" rx="27" ry="18"/><text text-anchor="middle" x="43" y="-157.8" font-family="Courier,monospace" font-size="14.00">b</text></g><g id="edge2" class="edge"><title>b->obj</title><path fill="none" stroke="black" stroke-width="0.5" d="M69.2174,-157.662C90.9996,-153.915 123.147,-148.385 150.231,-143.726"/><polygon fill="black" stroke="black" stroke-width="0.5" points="150.777,-146.295 157.724,-142.437 149.887,-141.121 150.777,-146.295"/></g><g id="node4" class="node"><title>c</title><ellipse fill="none" stroke="black" stroke-width="0.5" cx="43" cy="-108" rx="41.897" ry="18"/><text text-anchor="middle" x="43" y="-103.8" font-family="Courier,monospace" font-size="14.00">c.data</text></g><g id="edge3" class="edge"><title>c->obj</title><path fill="none" stroke="black" stroke-width="0.5" d="M82.3954,-114.605C102.772,-118.11 128.077,-122.463 150.069,-126.247"/><polygon fill="black" stroke="black" stroke-width="0.5" points="149.86,-128.874 157.697,-127.559 150.75,-123.7 149.86,-128.874"/></g><g id="node5" class="node"><title>L</title><ellipse fill="none" stroke="black" stroke-width="0.5" cx="43" cy="-34" rx="27" ry="18"/><text text-anchor="middle" x="43" y="-29.8" font-family="Courier,monospace" font-size="14.00">L</text></g><g id="edge4" class="edge"><title>L->obj</title><path fill="none" stroke="black" stroke-width="0.5" d="M62.9324,-46.183C88.5083,-62.6411 134.554,-92.2712 166.386,-112.755"/><polygon fill="black" stroke="black" stroke-width="0.5" points="165.223,-115.128 172.951,-116.98 168.064,-110.714 165.223,-115.128"/></g></g></svg>
-
- Note that these references are all equal. `a` is no more valid a name for the
- list than `b`, `c.data`, or `L` (from the perspective of `d`, which is exposed
- to everyone else as `d.func_closure[0].cell_contents`, but that's cumbersome
- and you would never do that in practice). As a result, if you delete one of
- these references—explicitly with `del a`, or implicitly if a name goes out of
- scope—then the other references are still around, and object continues to
- exist. If all of an object's references disappear, then Python's garbage
- collector should eliminate it.
-
- ## Dead ends
-
- My first thought when approaching this problem was to physically write over the
- memory where our target object is stored. This can be done using
- [`ctypes.memmove()`](https://docs.python.org/2/library/ctypes.html#ctypes.memmove)
- from the Python standard library:
-
- {% highlight pycon %}
-
- >>> class A(object): pass
- ...
- >>> class B(object): pass
- ...
- >>> obj = A()
- >>> print obj
- <__main__.A object at 0x10e3e1190>
- >>> import ctypes
- >>> ctypes.memmove(id(A), id(B), object.__sizeof__(A))
- 140576340136752
- >>> print obj
- <__main__.B object at 0x10e3e1190>
-
- {% endhighlight %}
-
- What we are doing here is overwriting the fields of the `A` instance of the
- [`PyClassObject` C struct](https://github.com/python/cpython/blob/2.7/Include/classobject.h#L12)
- with fields from the `B` struct instance. As a result, they now share various
- properties, such as their attribute dictionaries
- ([`__dict__`](https://docs.python.org/2/reference/datamodel.html#the-standard-type-hierarchy)).
- So, we can do things like this:
-
- {% highlight pycon %}
-
- >>> B.foo = 123
- >>> obj.foo
- 123
-
- {% endhighlight %}
-
- However, there are clear issues. What we've done is create a
- [_shallow copy_](https://en.wikipedia.org/wiki/Object_copy#Shallow_copy).
- Therefore, `A` and `B` are still distinct objects, so certain changes made to
- one will not be replicated to the other:
-
- {% highlight pycon %}
-
- >>> A is B
- False
- >>> B.__name__ = "C"
- >>> A.__name__
- 'B'
-
- {% endhighlight %}
-
- Also, this won't work if `A` and `B` are different sizes, since we will be
- either reading from or writing to memory that we don't necessarily own:
-
- {% highlight pycon %}
-
- >>> A = ()
- >>> B = []
- >>> print A.__sizeof__(), B.__sizeof__()
- 24 40
- >>> import ctypes
- >>> ctypes.memmove(id(A), id(B), A.__sizeof__())
- 4321271888
- Python(33575,0x7fff76925300) malloc: *** error for object 0x6f: pointer being freed was not allocated
- *** set a breakpoint in malloc_error_break to debug
- Abort trap: 6
-
- {% endhighlight %}
-
- Oh, and there's a bit of a problem when we deallocate these objects, too...
-
- {% highlight pycon %}
-
- >>> A = []
- >>> B = range(8)
- >>> import ctypes
- >>> ctypes.memmove(id(A), id(B), A.__sizeof__())
- 4514685728
- >>> print A
- [0, 1, 2, 3, 4, 5, 6, 7]
- >>> del A
- >>> del B
- Segmentation fault: 11
-
- {% endhighlight %}
-
- ## Fishing for references with Guppy
-
- A more correct solution is finding all of the _references_ to the old object,
- and then updating them to point to the new object, rather than replacing the
- old object directly.
-
- But how do we track references? Fortunately, there's a library called
- [Guppy](http://guppy-pe.sourceforge.net/) that allows us to do this. Often used
- for diagnosing memory leaks, we can take advantage of its robust object
- tracking features here. Install it with [pip](https://pypi.python.org/pypi/pip)
- (`pip install guppy`).
-
- I've always found Guppy hard to use (as many debuggers are, though justified by
- the complexity of the task involved), so we'll begin with a feature demo before
- delving into the actual problem.
-
- ### Feature demonstration
-
- Guppy's interface is deceptively simple. We begin by calling
- [`guppy.hpy()`](http://guppy-pe.sourceforge.net/guppy.html#kindnames.guppy.hpy),
- to expose the Heapy interface, which is the component of Guppy that has the
- features we want:
-
- {% highlight pycon %}
-
- >>> import guppy
- >>> hp = guppy.hpy()
- >>> hp
- Top level interface to Heapy.
- Use eg: hp.doc for more info on hp.
-
- {% endhighlight %}
-
- Calling
- [`hp.heap()`](http://guppy-pe.sourceforge.net/heapy_Use.html#heapykinds.Use.heap)
- shows us a table of the objects known to Guppy, grouped together
- (mathematically speaking,
- [_partitioned_](https://en.wikipedia.org/wiki/Partition_of_a_set)) by
- type<sup><a id="ref3" href="#fn3">[3]</a></sup> and sorted by how much space
- they take up in memory:
-
- {% highlight pycon %}
-
- >>> heap = hp.heap()
- >>> heap
- Partition of a set of 45761 objects. Total size = 4699200 bytes.
- Index Count % Size % Cumulative % Kind (class / dict of class)
- 0 15547 34 1494736 32 1494736 32 str
- 1 8356 18 770272 16 2265008 48 tuple
- 2 346 1 452080 10 2717088 58 dict (no owner)
- 3 13685 30 328440 7 3045528 65 int
- 4 71 0 221096 5 3266624 70 dict of module
- 5 1652 4 211456 4 3478080 74 types.CodeType
- 6 199 0 210856 4 3688936 79 dict of type
- 7 1614 4 193680 4 3882616 83 function
- 8 199 0 177008 4 4059624 86 type
- 9 124 0 135328 3 4194952 89 dict of class
- <91 more rows. Type e.g. '_.more' to view.>
-
- {% endhighlight %}
-
- This object (called an
- [`IdentitySet`](http://guppy-pe.sourceforge.net/heapy_UniSet.html#heapykinds.IdentitySet))
- looks bizarre, but it can be treated roughly like a list. If we want to take a
- look at strings, we can do `heap[0]`:
-
- {% highlight pycon %}
-
- >>> heap[0]
- Partition of a set of 22606 objects. Total size = 2049896 bytes.
- Index Count % Size % Cumulative % Kind (class / dict of class)
- 0 22606 100 2049896 100 2049896 100 str
-
- {% endhighlight %}
-
- This isn't very useful, though. What we really want to do is re-partition this
- subset using another relationship. There are a number of options, such as:
-
- {% highlight pycon %}
-
- >>> heap[0].byid # Group by object ID; each subset therefore has one element
- Set of 22606 <str> objects. Total size = 2049896 bytes.
- Index Size % Cumulative % Representation (limited)
- 0 7480 0.4 7480 0.4 'The class Bi... copy of S.\n'
- 1 4872 0.2 12352 0.6 "Support for ... 'error'.\n\n"
- 2 4760 0.2 17112 0.8 'Heap queues\...at Art! :-)\n'
- 3 4760 0.2 21872 1.1 'Heap queues\...at Art! :-)\n'
- 4 3896 0.2 25768 1.3 'This module ...ng function\n'
- 5 3824 0.2 29592 1.4 'The type of ...call order.\n'
- 6 3088 0.2 32680 1.6 't\x00\x00|\x...x00|\x02\x00S'
- 7 2992 0.1 35672 1.7 'HeapView(roo... size, etc.\n'
- 8 2808 0.1 38480 1.9 'Directory tr...ories\n\n '
- 9 2640 0.1 41120 2.0 'The class No... otherwise.\n'
- <22596 more rows. Type e.g. '_.more' to view.>
-
- {% endhighlight %}
-
- {% highlight pycon %}
-
- >>> heap[0].byrcs # Group by what types of objects reference the strings
- Partition of a set of 22606 objects. Total size = 2049896 bytes.
- Index Count % Size % Cumulative % Referrers by Kind (class / dict of class)
- 0 6146 27 610752 30 610752 30 types.CodeType
- 1 5304 23 563984 28 1174736 57 tuple
- 2 4104 18 237536 12 1412272 69 dict (no owner)
- 3 1959 9 139880 7 1552152 76 list
- 4 564 2 136080 7 1688232 82 function, tuple
- 5 809 4 97896 5 1786128 87 dict of module
- 6 346 2 71760 4 1857888 91 dict of type
- 7 365 2 19408 1 1877296 92 dict of module, tuple
- 8 192 1 16176 1 1893472 92 dict (no owner), list
- 9 232 1 11784 1 1905256 93 dict of class, function, tuple, types.CodeType
- <229 more rows. Type e.g. '_.more' to view.>
-
- {% endhighlight %}
-
- {% highlight pycon %}
-
- >>> heap[0].byvia # Group by how the strings are related to their referrers
- Partition of a set of 22606 objects. Total size = 2049896 bytes.
- Index Count % Size % Cumulative % Referred Via:
- 0 2656 12 420456 21 420456 21 '[0]'
- 1 2095 9 259008 13 679464 33 '.co_code'
- 2 2095 9 249912 12 929376 45 '.co_filename'
- 3 564 2 136080 7 1065456 52 '.func_doc', '[0]'
- 4 243 1 103528 5 1168984 57 "['__doc__']"
- 5 1930 9 100584 5 1269568 62 '.co_lnotab'
- 6 502 2 31128 2 1300696 63 '[1]'
- 7 306 1 16272 1 1316968 64 '[2]'
- 8 242 1 12960 1 1329928 65 '[3]'
- 9 184 1 9872 0 1339800 65 '[4]'
- <7323 more rows. Type e.g. '_.more' to view.>
-
- {% endhighlight %}
-
- From this, we can see that the plurality of memory devoted to strings is taken
- up by those referenced by code objects (`types.CodeType` represents
- Python code—accessible from a non-C-defined function through
- `func.func_code`—and contains things like the names of its local variables and
- the actual sequence of opcodes that make it up).
-
- For fun, let's pick a random string.
-
- {% highlight pycon %}
-
- >>> import random
- >>> obj = heap[0].byid[random.randrange(0, heap[0].count)]
- >>> obj
- Set of 1 <str> object. Total size = 176 bytes.
- Index Size % Cumulative % Representation (limited)
- 0 176 100.0 176 100.0 'Define names...not listed.\n'
-
- {% endhighlight %}
-
- Interesting. Since this heap subset contains only one element, we can use
- [`.theone`](http://guppy-pe.sourceforge.net/heapy_UniSet.html#heapykinds.IdentitySetSingleton.theone)
- to get the actual object represented here:
-
- {% highlight pycon %}
-
- >>> obj.theone
- 'Define names for all type symbols known in the standard interpreter.\n\nTypes that are part of optional modules (e.g. array) are not listed.\n'
-
- {% endhighlight %}
-
- Looks like the docstring for the
- [`types`](https://docs.python.org/2/library/types.html) module. We can confirm
- by using
- [`.referrers`](http://guppy-pe.sourceforge.net/heapy_UniSet.html#heapykinds.IdentitySet.referrers)
- to get the set of objects that refer to objects in the given set:
-
- {% highlight pycon %}
-
- >>> obj.referrers
- Partition of a set of 1 object. Total size = 3352 bytes.
- Index Count % Size % Cumulative % Kind (class / dict of class)
- 0 1 100 3352 100 3352 100 dict of module
-
- {% endhighlight %}
-
- This is `types.__dict__` (since the docstring we got is actually stored as
- `types.__dict__["__doc__"]`), so if we use `.referrers` again:
-
- {% highlight pycon %}
-
- >>> obj.referrers.referrers
- Partition of a set of 1 object. Total size = 56 bytes.
- Index Count % Size % Cumulative % Kind (class / dict of class)
- 0 1 100 56 100 56 100 module
- >>> obj.referrers.referrers.theone
- <module 'types' from '/usr/local/Cellar/python/2.7.8_2/Frameworks/Python.framework/Versions/2.7/lib/python2.7/types.pyc'>
- >>> import types
- >>> types.__doc__ is obj.theone
- True
-
- {% endhighlight %}
-
- _But why did we find an object in the `types` module if we never imported it?_
- Well, let's see. We can use
- [`hp.iso()`](http://guppy-pe.sourceforge.net/heapy_Use.html#heapykinds.Use.iso)
- to get the Heapy set consisting of a single given object:
-
- {% highlight pycon %}
-
- >>> hp.iso(types)
- Partition of a set of 1 object. Total size = 56 bytes.
- Index Count % Size % Cumulative % Kind (class / dict of class)
- 0 1 100 56 100 56 100 module
-
- {% endhighlight %}
-
- Using a similar procedure as before, we see that `types` is imported by the
- [`traceback`](https://docs.python.org/2/library/traceback.html) module:
-
- {% highlight pycon %}
-
- >>> hp.iso(types).referrers
- Partition of a set of 10 objects. Total size = 25632 bytes.
- Index Count % Size % Cumulative % Kind (class / dict of class)
- 0 2 20 13616 53 13616 53 dict (no owner)
- 1 5 50 9848 38 23464 92 dict of module
- 2 1 10 1048 4 24512 96 dict of guppy.etc.Glue.Interface
- 3 1 10 1048 4 25560 100 dict of guppy.etc.Glue.Share
- 4 1 10 72 0 25632 100 tuple
- >>> hp.iso(types).referrers[1].byid
- Set of 5 <dict of module> objects. Total size = 9848 bytes.
- Index Size % Cumulative % Owner Name
- 0 3352 34.0 3352 34.0 traceback
- 1 3352 34.0 6704 68.1 warnings
- 2 1048 10.6 7752 78.7 __main__
- 3 1048 10.6 8800 89.4 abc
- 4 1048 10.6 9848 100.0 guppy.etc.Glue
-
- {% endhighlight %}
-
- ...and that is imported by
- [`site`](https://docs.python.org/2/library/site.html):
-
- {% highlight pycon %}
-
- >>> import traceback
- >>> hp.iso(traceback).referrers
- Partition of a set of 3 objects. Total size = 15992 bytes.
- Index Count % Size % Cumulative % Kind (class / dict of class)
- 0 1 33 12568 79 12568 79 dict (no owner)
- 1 1 33 3352 21 15920 100 dict of module
- 2 1 33 72 0 15992 100 tuple
- >>> hp.iso(traceback).referrers[1].byid
- Set of 1 <dict of module> object. Total size = 3352 bytes.
- Index Size % Cumulative % Owner Name
- 0 3352 100.0 3352 100.0 site
-
- {% endhighlight %}
-
- Since `site` is imported by Python on startup, we've figured out why objects
- from `types` exist, even though we've never used them.
-
- We've learned something important, too. When objects are stored as ordinary
- attributes of a parent object (like `types.__doc__`, `traceback.types`, and
- `site.traceback` from above), they are not referenced directly by the parent
- object, but by that object's `__dict__` attribute. Therefore, if we want to
- replace `A` with `B` and `A` is an attribute of `C`, we (probably) don't need
- to know anything special about `C`—just how to modify dictionaries.
-
- A good Guppy/Heapy tutorial, while a bit old and incomplete, can be found on
- [Andrey Smirnov's website](http://smira.ru/wp-content/uploads/2011/08/heapy.html).
-
- ## Examining paths
-
- Let's set up an example replacement using class instances:
-
- {% highlight python %}
-
- class A(object):
- pass
-
- class B(object):
- pass
-
- a = A()
- b = B()
-
- {% endhighlight %}
-
- Suppose we want to replace `a` with `b`. From the demo above, we know that we
- can get the Heapy set of a single object using `hp.iso()`. We also know we can
- use `.referrers` to get a set of objects that reference the given object:
-
- {% highlight pycon %}
-
- >>> import guppy
- >>> hp = guppy.hpy()
- >>> print hp.iso(a).referrers
- Partition of a set of 1 object. Total size = 1048 bytes.
- Index Count % Size % Cumulative % Kind (class / dict of class)
- 0 1 100 1048 100 1048 100 dict of module
-
- {% endhighlight %}
-
- `a` is only referenced by one object, which makes sense, since we've only used
- it in one place—as a local variable—meaning `hp.iso(a).referrers.theone` must
- be [`locals()`](https://docs.python.org/2/library/functions.html#locals):
-
- {% highlight pycon %}
-
- >>> hp.iso(a).referrers.theone is locals()
- True
-
- {% highlight pycon %}
-
- However, there is a more useful feature available to us:
- [`.pathsin`](http://guppy-pe.sourceforge.net/heapy_UniSet.html#heapykinds.IdentitySet.pathsin).
- This also returns references to the given object, but instead of a Heapy set,
- it is a list of `Path` objects. These are more useful since they tell us not
- only _what_ objects are related to the given object, but _how_ they are
- related.
-
- {% highlight pycon %}
-
- >>> print hp.iso(a).pathsin
- 0: Src['a']
-
- {% endhighlight %}
-
- This looks very ambiguous. However, we find that we can extract the source of
- the reference using `.src`:
-
- {% highlight pycon %}
-
- >>> path = hp.iso(a).pathsin[0]
- >>> print path.src
- Partition of a set of 1 object. Total size = 1048 bytes.
- Index Count % Size % Cumulative % Kind (class / dict of class)
- 0 1 100 1048 100 1048 100 dict of module
- >>> path.src.theone is locals()
- True
-
- {% endhighlight %}
-
- ...and, we can examine the type of relation by looking at `.path[1]` (the
- actual reason for this isn't worth getting into, due to Guppy's lack of
- documentation on the subject):
-
- {% highlight pycon %}
-
- >>> relation = path.path[1]
- >>> relation
- <guppy.heapy.Path.Based_R_INDEXVAL object at 0x100f38230>
-
- {% endhighlight %}
-
- We notice that `relation` is a `Based_R_INDEXVAL` object. Sounds bizarre, but
- this tells us that `path.src` is related to `a` by being a particular index
- value of it. What index? We can get this using `relation.r`:
-
- {% highlight pycon %}
-
- >>> rel = relation.r
- >>> print rel
- a
-
- {% endhighlight %}
-
- Ah ha! So now we know that `a` is equal to the reference source indexed by
- `rel`. But what is the reference source? It's just `path.src.theone`:
-
- {% highlight pycon %}
-
- >>> path.src.theone[rel] is a
- True
-
- {% endhighlight %}
-
- But `path.src.theone` is just a dictionary, meaning we know how to modify it
- very easily:
-
- {% highlight pycon %}
-
- >>> path.src.theone[rel] = b
- >>> a
- <__main__.B object at 0x100dae090>
- >>> a is b
- True
-
- {% endhighlight %}
-
- Python's documentation tells us not to modify the locals dictionary, but screw
- it, we're gonna do it anyway.
-
- ## Handling different reference types
-
- [...]
-
- ### Dictionaries
-
- dicts, class attributes via `__dict__`, locals()
-
- ### Lists
-
- simple replacement
-
- ### Tuples
-
- recursively replace parent since immutable
-
- ### Bound methods
-
- note that built-in methods and regular methods have different underlying C
- structs, but have the same offsets for their self field
-
- ### Closure cells
-
- function closures
-
- ### Frames
-
- ...
-
- ### Slots
-
- ...
-
- ### Classes
-
- ...
-
- ### Other cases
-
- Certainly, not every case is handled above, but it seems to cover the vast
- majority of instances that I've found through testing. There are a number of
- reference relations in Guppy that I couldn't figure out how to replicate
- without doing something insane (`R_HASATTR`, `R_CELL`, and `R_STACK`), so some
- obscure replacements are likely unimplemented.
-
- Some other kinds of replacements are known, but impossible. For example,
- replacing a class object that uses `__slots__` with another class will not work
- if the replacement class has a different slot layout and instances of the old
- class exist. More generally, replacing a class with a non-class object won't
- work if instances of the class exist. Furthermore, references stored in data
- structures managed by C extensions cannot be changed, since there's no good way
- for us to track these.
-
- Remaining areas to explore include behavior when metaclasses and more complex
- descriptors are involved. Implementing a more complete version of `replace()`
- is left as an exercise for the reader.
-
- ## Footnotes
-
- 1. <a id="fn1" href="#ref1">^</a> This post relies _heavily_ on implementation
- details of CPython 2.7. While it could be adapted for Python 3 by examining
- changes to the internal structures of objects that we used above, that would
- be a lost cause if you wanted to replicate this on
- [Jython](http://www.jython.org/) or some other implementation. We are so
- dependent on concepts specific to CPython that you would need to start from
- scratch, beginning with a language-specific replacement for Guppy.
-
- 2. <a id="fn2" href="#ref2">^</a> The
- [DOT files](https://en.wikipedia.org/wiki/DOT_(graph_description_language))
- used to generate graphs in this post are
- [available on Gist](https://gist.github.com/earwig/edc13f04f871c110eea6).
-
- 3. <a id="fn3" href="#ref3">^</a> They're actually grouped together by _clodo_
- ("class or dict object"), which is similar to type, but groups `__dict__`s
- separately by their owner's type.
|