
CS 241 Honors
Networking and TCP

Ben Kurtovic

University of Illinois Urbana-Champaign

April 11, 2017

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 1 / 36



Overview

Regular section focuses on practical networking (what system calls to
use, etc.)

But how does networking really work behind the scenes?

Motivation for TCP (Why do we need it?)

OSI/Internet model (layers of protocols)

Guarantees (What does it need to do?)

Connection management, reliability, flow control, congestion control

Implementation (How does it do it?)

What’s the responsibility of the user, and what’s the responsibility of
the kernel (or other parts of the network)?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 2 / 36



Overview

Regular section focuses on practical networking (what system calls to
use, etc.)

But how does networking really work behind the scenes?

Motivation for TCP (Why do we need it?)

OSI/Internet model (layers of protocols)

Guarantees (What does it need to do?)

Connection management, reliability, flow control, congestion control

Implementation (How does it do it?)

What’s the responsibility of the user, and what’s the responsibility of
the kernel (or other parts of the network)?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 2 / 36



Overview

Regular section focuses on practical networking (what system calls to
use, etc.)

But how does networking really work behind the scenes?

Motivation for TCP (Why do we need it?)

OSI/Internet model (layers of protocols)

Guarantees (What does it need to do?)

Connection management, reliability, flow control, congestion control

Implementation (How does it do it?)

What’s the responsibility of the user, and what’s the responsibility of
the kernel (or other parts of the network)?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 2 / 36



Overview

Regular section focuses on practical networking (what system calls to
use, etc.)

But how does networking really work behind the scenes?

Motivation for TCP (Why do we need it?)

OSI/Internet model (layers of protocols)

Guarantees (What does it need to do?)

Connection management, reliability, flow control, congestion control

Implementation (How does it do it?)

What’s the responsibility of the user, and what’s the responsibility of
the kernel (or other parts of the network)?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 2 / 36



Overview

Regular section focuses on practical networking (what system calls to
use, etc.)

But how does networking really work behind the scenes?

Motivation for TCP (Why do we need it?)

OSI/Internet model (layers of protocols)

Guarantees (What does it need to do?)

Connection management, reliability, flow control, congestion control

Implementation (How does it do it?)

What’s the responsibility of the user, and what’s the responsibility of
the kernel (or other parts of the network)?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 2 / 36



Motivation

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 3 / 36



OSI model

Internet is built in layers of protocols

Defined by what is provided to them (layers below), and what they
must provide (layers above)

Source: Wikipedia

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 4 / 36



Internet model (RFC 1122)

Application layer

Meaningful functionality for the user (e.g. HTTP, FTP, SMTP, SSH)
plus common ”support” protocols (e.g. DNS, BGP)

Transport layer

Reliable transmission, connection management (TCP), or not (UDP)

Internet layer

Addressing and routing packets through a network, without reliability (IP)

Link layer

Direct connection between hosts, semi-reliable (e.g. Ethernet, Wi-Fi)

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 5 / 36



Why care about TCP?

We could have multiple classes about any of these layers or any part of
them, so why care about TCP in particular?

Often a bottleneck in systems code

The OS has a fairly significant role

Link layer is more of a hardware problem
Internet layer is a router problem
Application layer is not a systems problem, it’s what the system
supports

It’s a complex and interesting study of how protocols are designed
and evolve

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 6 / 36



Why care about TCP?

We could have multiple classes about any of these layers or any part of
them, so why care about TCP in particular?

Often a bottleneck in systems code

The OS has a fairly significant role

Link layer is more of a hardware problem
Internet layer is a router problem
Application layer is not a systems problem, it’s what the system
supports

It’s a complex and interesting study of how protocols are designed
and evolve

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 6 / 36



Why care about TCP?

We could have multiple classes about any of these layers or any part of
them, so why care about TCP in particular?

Often a bottleneck in systems code

The OS has a fairly significant role

Link layer is more of a hardware problem
Internet layer is a router problem
Application layer is not a systems problem, it’s what the system
supports

It’s a complex and interesting study of how protocols are designed
and evolve

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 6 / 36



Why care about TCP?

We could have multiple classes about any of these layers or any part of
them, so why care about TCP in particular?

Often a bottleneck in systems code

The OS has a fairly significant role

Link layer is more of a hardware problem
Internet layer is a router problem
Application layer is not a systems problem, it’s what the system
supports

It’s a complex and interesting study of how protocols are designed
and evolve

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 6 / 36



TCP refresher

What we are provided (from IP):

Ability to send small, discrete packets through the Internet to a
specific destination

What we must provide (to applications):

A stream-like way of sending data reliably

More specifically:

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 7 / 36



TCP refresher

What we are provided (from IP):

Ability to send small, discrete packets through the Internet to a
specific destination

What we must provide (to applications):

A stream-like way of sending data reliably

More specifically:

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 7 / 36



TCP refresher

What we are provided (from IP):

Ability to send small, discrete packets through the Internet to a
specific destination

What we must provide (to applications):

A stream-like way of sending data reliably

More specifically:

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 7 / 36



TCP refresher

What we are provided (from IP):

Ability to send small, discrete packets through the Internet to a
specific destination

What we must provide (to applications):

A stream-like way of sending data reliably

More specifically:

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 7 / 36



TCP refresher

What we are provided (from IP):

Ability to send small, discrete packets through the Internet to a
specific destination

What we must provide (to applications):

A stream-like way of sending data reliably

More specifically:

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 7 / 36



TCP refresher

Connection management

How do we start talking, how do we stop talking?
(last one is surprisingly painful)
Why?

Reliable transmission

What happens if packets are lost?
What happens if packets are received out of order?
(How can this happen?)
What happens if packets are corrupted?

Flow control

How do we avoid flooding our destination?

Congestion control

How do we avoid flooding the network?
How can we play fairly with other users?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 8 / 36



TCP refresher

Connection management

How do we start talking, how do we stop talking?
(last one is surprisingly painful)
Why?

Reliable transmission

What happens if packets are lost?
What happens if packets are received out of order?
(How can this happen?)
What happens if packets are corrupted?

Flow control

How do we avoid flooding our destination?

Congestion control

How do we avoid flooding the network?
How can we play fairly with other users?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 8 / 36



TCP refresher

Connection management

How do we start talking, how do we stop talking?
(last one is surprisingly painful)
Why?

Reliable transmission

What happens if packets are lost?
What happens if packets are received out of order?
(How can this happen?)
What happens if packets are corrupted?

Flow control

How do we avoid flooding our destination?

Congestion control

How do we avoid flooding the network?
How can we play fairly with other users?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 8 / 36



TCP refresher

Connection management

How do we start talking, how do we stop talking?
(last one is surprisingly painful)
Why?

Reliable transmission

What happens if packets are lost?
What happens if packets are received out of order?
(How can this happen?)
What happens if packets are corrupted?

Flow control

How do we avoid flooding our destination?

Congestion control

How do we avoid flooding the network?
How can we play fairly with other users?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 8 / 36



Guarantees

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 9 / 36



Two Generals’ Problem

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 10 / 36



Two Generals’ Problem

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 10 / 36



Two Generals’ Problem

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 10 / 36



Two Generals’ Problem

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 10 / 36



Two Generals’ Problem

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 10 / 36



Two Generals’ Problem

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 10 / 36



Two Generals’ Problem

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 10 / 36



Two Generals’ Problem

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 10 / 36



Moral of the story

Two Generals’ Problem is proven unsolvable: there is no general
solution to ensure both sides communicating over an unreliable link
can agree on something

TCP is designed to deal with some degree of uncertainty

Acknowledgements are necessary for reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 11 / 36



Reliable transmission primer

All we get from the user is a sequence of bytes (every time they call
write/send)

Message gets broken up into segments up to size MSS

Maximum segment size: based on how much the network layer can
transmit at once (IP packet fragmentation is possible, though very
undesirable)

We need some way to know which segments were received

Solution: number the bytes (sequence number)

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 12 / 36



Reliable transmission primer

All we get from the user is a sequence of bytes (every time they call
write/send)

Message gets broken up into segments up to size MSS

Maximum segment size: based on how much the network layer can
transmit at once (IP packet fragmentation is possible, though very
undesirable)

We need some way to know which segments were received

Solution: number the bytes (sequence number)

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 12 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 13 / 36



Reliable transmission: Stop-and-wait

Legitimate way of sending data reliably

Ensure each segment is received before sending the next one

Sequence number ensures data is kept in order

Inefficient!

Each segment bounded by MSS (≥ 536 bytes)
Wait at least 1 RTT per segment; typical RTT between 10 and 200
miliseconds
Suppose it’s 100ms: we can only send 536B/100ms ≈ 5KB/s!

Clearly we can do better

But before that...

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 14 / 36



Reliable transmission: Stop-and-wait

Legitimate way of sending data reliably

Ensure each segment is received before sending the next one

Sequence number ensures data is kept in order

Inefficient!

Each segment bounded by MSS (≥ 536 bytes)
Wait at least 1 RTT per segment; typical RTT between 10 and 200
miliseconds
Suppose it’s 100ms: we can only send 536B/100ms ≈ 5KB/s!

Clearly we can do better

But before that...

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 14 / 36



Reliable transmission: Stop-and-wait

Legitimate way of sending data reliably

Ensure each segment is received before sending the next one

Sequence number ensures data is kept in order

Inefficient!

Each segment bounded by MSS (≥ 536 bytes)
Wait at least 1 RTT per segment; typical RTT between 10 and 200
miliseconds
Suppose it’s 100ms: we can only send 536B/100ms ≈ 5KB/s!

Clearly we can do better

But before that...

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 14 / 36



Connection management

How do we start a connection?

”Three-way handshake” between client and server

0 [Server]: I’m ready to talk to people! (listen)

1 [Client]: Hi, can we talk? Here’s my initial sequence number.
(connect)

2 [Server]: OK, we can talk. Here’s my initial sequence number.
(accept)

3 [Client]: OK.

Questions:

What’s the initial sequence number? 0? No, it’s random. Why?

What happens if a message is lost?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 15 / 36



Connection management

How do we start a connection?

”Three-way handshake” between client and server

0 [Server]: I’m ready to talk to people! (listen)

1 [Client]: Hi, can we talk? Here’s my initial sequence number.
(connect)

2 [Server]: OK, we can talk. Here’s my initial sequence number.
(accept)

3 [Client]: OK.

Questions:

What’s the initial sequence number? 0? No, it’s random. Why?

What happens if a message is lost?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 15 / 36



Connection management

How do we start a connection?

”Three-way handshake” between client and server

0 [Server]: I’m ready to talk to people! (listen)

1 [Client]: Hi, can we talk? Here’s my initial sequence number.
(connect)

2 [Server]: OK, we can talk. Here’s my initial sequence number.
(accept)

3 [Client]: OK.

Questions:

What’s the initial sequence number? 0? No, it’s random. Why?

What happens if a message is lost?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 15 / 36



Connection management

How do we start a connection?

”Three-way handshake” between client and server

0 [Server]: I’m ready to talk to people! (listen)

1 [Client]: Hi, can we talk? Here’s my initial sequence number.
(connect)

2 [Server]: OK, we can talk. Here’s my initial sequence number.
(accept)

3 [Client]: OK.

Questions:

What’s the initial sequence number? 0? No, it’s random. Why?

What happens if a message is lost?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 15 / 36



Connection management

How do we start a connection?

”Three-way handshake” between client and server

0 [Server]: I’m ready to talk to people! (listen)

1 [Client]: Hi, can we talk? Here’s my initial sequence number.
(connect)

2 [Server]: OK, we can talk. Here’s my initial sequence number.
(accept)

3 [Client]: OK.

Questions:

What’s the initial sequence number? 0? No, it’s random. Why?

What happens if a message is lost?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 15 / 36



Connection management

How do we start a connection?

”Three-way handshake” between client and server

0 [Server]: I’m ready to talk to people! (listen)

1 [Client]: Hi, can we talk? Here’s my initial sequence number.
(connect)

2 [Server]: OK, we can talk. Here’s my initial sequence number.
(accept)

3 [Client]: OK.

Questions:

What’s the initial sequence number?

0? No, it’s random. Why?

What happens if a message is lost?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 15 / 36



Connection management

How do we start a connection?

”Three-way handshake” between client and server

0 [Server]: I’m ready to talk to people! (listen)

1 [Client]: Hi, can we talk? Here’s my initial sequence number.
(connect)

2 [Server]: OK, we can talk. Here’s my initial sequence number.
(accept)

3 [Client]: OK.

Questions:

What’s the initial sequence number? 0?

No, it’s random. Why?

What happens if a message is lost?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 15 / 36



Connection management

How do we start a connection?

”Three-way handshake” between client and server

0 [Server]: I’m ready to talk to people! (listen)

1 [Client]: Hi, can we talk? Here’s my initial sequence number.
(connect)

2 [Server]: OK, we can talk. Here’s my initial sequence number.
(accept)

3 [Client]: OK.

Questions:

What’s the initial sequence number? 0? No, it’s random. Why?

What happens if a message is lost?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 15 / 36



Connection management

How do we start a connection?

”Three-way handshake” between client and server

0 [Server]: I’m ready to talk to people! (listen)

1 [Client]: Hi, can we talk? Here’s my initial sequence number.
(connect)

2 [Server]: OK, we can talk. Here’s my initial sequence number.
(accept)

3 [Client]: OK.

Questions:

What’s the initial sequence number? 0? No, it’s random. Why?

What happens if a message is lost?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 15 / 36



TCP segment anatomy

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 16 / 36



TCP segment anatomy

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 16 / 36



TCP segment anatomy

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 16 / 36



TCP connection handshake

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 17 / 36



TCP connection handshake

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 17 / 36



TCP connection handshake

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 17 / 36



Now back to reliable transmission!

How do we deal with the speed problem from earlier?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 18 / 36



Reliable transmission: Don’t try this at home

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 19 / 36



Reliable transmission: Don’t try this at home

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 19 / 36



Reliable transmission: Don’t try this at home

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 19 / 36



Reliable transmission: Don’t try this at home

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 19 / 36



Reliable transmission: Challenges

What’s wrong with this?

Separate timeout for each segment or one timeout for all?

Go-Back-N vs. Selective Repeat

Flood the recipient

All the bytes must be stored in a buffer in the OS somewhere
What if the OS doesn’t want to store 100 MB in memory before a
program decides to call read?

Flood the network

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 20 / 36



Reliable transmission: Challenges

What’s wrong with this?

Separate timeout for each segment or one timeout for all?

Go-Back-N vs. Selective Repeat

Flood the recipient

All the bytes must be stored in a buffer in the OS somewhere
What if the OS doesn’t want to store 100 MB in memory before a
program decides to call read?

Flood the network

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 20 / 36



Reliable transmission: Challenges

What’s wrong with this?

Separate timeout for each segment or one timeout for all?

Go-Back-N vs. Selective Repeat

Flood the recipient

All the bytes must be stored in a buffer in the OS somewhere
What if the OS doesn’t want to store 100 MB in memory before a
program decides to call read?

Flood the network

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 20 / 36



Reliable transmission: Challenges

What’s wrong with this?

Separate timeout for each segment or one timeout for all?

Go-Back-N vs. Selective Repeat

Flood the recipient

All the bytes must be stored in a buffer in the OS somewhere
What if the OS doesn’t want to store 100 MB in memory before a
program decides to call read?

Flood the network

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 20 / 36



Reliable transmission in TCP

Timer starts for oldest un-acknowledged segment

On timeout, resend only that segment

Hopefully subsequent segments were buffered in the recipient

Also resend on three duplicate acknowledgements

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 21 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 22 / 36



Reliable transmission: error checking

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 23 / 36



Reliable transmission: error checking

16-bit checksum is just the one’s complement sum of all 16-bit words
in the segment (including the header), then one’s complemented

If checksum fails in receiver, just discard packet, like we didn’t get it

Commonly will also have stronger checksums at the link layer (e.g.
for Ethernet, Wi-Fi), and possibly also at the application layer

Why not just rely on the TCP checksum?

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 23 / 36



Flow control

How do we avoid flooding the recipient if they aren’t ready to receive yet?

Receiver window : number of bytes sender of segment is willing to
receive

By default: goes up to 216 − 1, corresponds to size of buffer in OS

Still restricts throughput, but not nearly as much as stop-and-wait

Max 216 − 1 bytes per RTT ≈ 640KB/s assuming RTT = 100ms

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 24 / 36



Flow control

How do we avoid flooding the recipient if they aren’t ready to receive yet?

Receiver window : number of bytes sender of segment is willing to
receive

By default: goes up to 216 − 1, corresponds to size of buffer in OS

Still restricts throughput, but not nearly as much as stop-and-wait

Max 216 − 1 bytes per RTT ≈ 640KB/s assuming RTT = 100ms

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 24 / 36



Flow control

How do we avoid flooding the recipient if they aren’t ready to receive yet?

Receiver window : number of bytes sender of segment is willing to
receive
By default: goes up to 216 − 1, corresponds to size of buffer in OS

Still restricts throughput, but not nearly as much as stop-and-wait
Max 216 − 1 bytes per RTT ≈ 640KB/s assuming RTT = 100ms

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 24 / 36



Flow control

How do we avoid flooding the recipient if they aren’t ready to receive yet?

Receiver window : number of bytes sender of segment is willing to
receive

By default: goes up to 216 − 1, corresponds to size of buffer in OS

Still restricts throughput, but not nearly as much as stop-and-wait

Max 216 − 1 bytes per RTT ≈ 640KB/s assuming RTT = 100ms

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 24 / 36



Sliding window

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 25 / 36



Congestion control

How do we avoid flooding the network?

Network has a maximum amount of data (capacity) we can push
through it at one time (based on bandwidth of wires, load of
intermediate routers, etc.)

Dynamic and somewhat unpredictable → need to adapt quickly

Solution: introduce a congestion window

While the receiver window tells you how much the recipient is willing to
receive, the congestion window tells you how much you are able to send
How much you actually send is the smaller of these two (roughly)

Arguably the most complicated part of TCP: dozens of variants exist
and is an ongoing area of research

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 26 / 36



Congestion control

How do we avoid flooding the network?

Network has a maximum amount of data (capacity) we can push
through it at one time (based on bandwidth of wires, load of
intermediate routers, etc.)

Dynamic and somewhat unpredictable → need to adapt quickly

Solution: introduce a congestion window

While the receiver window tells you how much the recipient is willing to
receive, the congestion window tells you how much you are able to send
How much you actually send is the smaller of these two (roughly)

Arguably the most complicated part of TCP: dozens of variants exist
and is an ongoing area of research

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 26 / 36



Congestion control

How do we avoid flooding the network?

Network has a maximum amount of data (capacity) we can push
through it at one time (based on bandwidth of wires, load of
intermediate routers, etc.)

Dynamic and somewhat unpredictable → need to adapt quickly

Solution: introduce a congestion window

While the receiver window tells you how much the recipient is willing to
receive, the congestion window tells you how much you are able to send
How much you actually send is the smaller of these two (roughly)

Arguably the most complicated part of TCP: dozens of variants exist
and is an ongoing area of research

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 26 / 36



Congestion control

How do we avoid flooding the network?

Network has a maximum amount of data (capacity) we can push
through it at one time (based on bandwidth of wires, load of
intermediate routers, etc.)

Dynamic and somewhat unpredictable → need to adapt quickly

Solution: introduce a congestion window

While the receiver window tells you how much the recipient is willing to
receive, the congestion window tells you how much you are able to send
How much you actually send is the smaller of these two (roughly)

Arguably the most complicated part of TCP: dozens of variants exist
and is an ongoing area of research

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 26 / 36



Congestion control: AIMD

Basic sketch:

Start congestion window at a small value (1 MSS)

Keep increasing the window periodically until a loss occurs—this
means we are sending too much, so decrease it and try again

Additive increase: Increase window at a linear rate
Multiplicative decrease: Decrease window at an exponential rate

AIMD ensures fairness between multiple connections!

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 27 / 36



Congestion control: Stages

Three stages (TCP Reno):

Slow start: Exponential increase until loss or threshold ssthresh is
reached
Congestion avoidance: Linear increase until loss
Fast recovery : If loss is due to duplicate ACKs, cut window in half and
increase linearly
If loss due to timeout, drop down to slow start

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 28 / 36



Connection termination

Four -way handshake (FIN/ACK, FIN/ACK)

Both sides can close independently

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 29 / 36



Connection termination: TIME WAIT

Lasts for 2 MSL (maximum segment lifetime), ≈ 2 mins

Prevents delayed/out-of-order packets from being picked up by a
subsequent connection (rare)

Gives enough time for last ACK to be received and resent if necessary

Prevents errors and data loss!

Don’t use SO REUSEADDR except for debugging!

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 30 / 36



Connection termination: TIME WAIT

Lasts for 2 MSL (maximum segment lifetime), ≈ 2 mins

Prevents delayed/out-of-order packets from being picked up by a
subsequent connection (rare)

Gives enough time for last ACK to be received and resent if necessary

Prevents errors and data loss!

Don’t use SO REUSEADDR except for debugging!

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 30 / 36



Implementation (things to know)

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 31 / 36



Operating system’s role

Transmission Control Block : stores TCP parameters (including
receiver window) in operating system

Processing new data and sending out ACKs happens asynchronously
in OS, not when you call read/write

Thus, packet segmentation is not reliable

One write call may be received through multiple read calls, or vice
versa

Except on localhost...

This is why application-layer protocols have sizes and headers/footers

Remember, it’s a stream

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 32 / 36



Operating system’s role

Transmission Control Block : stores TCP parameters (including
receiver window) in operating system

Processing new data and sending out ACKs happens asynchronously
in OS, not when you call read/write

Thus, packet segmentation is not reliable

One write call may be received through multiple read calls, or vice
versa

Except on localhost...

This is why application-layer protocols have sizes and headers/footers

Remember, it’s a stream

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 32 / 36



Overhead

TCP handshake takes 3
2 round trips

Congestion control takes several round trips to fully warm up

If you’re using SSL, it’s even more (2 extra round trips)

Reusing existing connections is very desirable (compare HTTP/1.0
with HTTP/1.1)

100% network utilization is impossible (congestion sawtooth peaks
around 75%)

Use UDP if you want to be ridiculous or greedy—but good luck
actually receiving everything

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 33 / 36



Overhead

TCP handshake takes 3
2 round trips

Congestion control takes several round trips to fully warm up

If you’re using SSL, it’s even more (2 extra round trips)

Reusing existing connections is very desirable (compare HTTP/1.0
with HTTP/1.1)

100% network utilization is impossible (congestion sawtooth peaks
around 75%)

Use UDP if you want to be ridiculous or greedy—but good luck
actually receiving everything

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 33 / 36



Overhead

TCP handshake takes 3
2 round trips

Congestion control takes several round trips to fully warm up

If you’re using SSL, it’s even more (2 extra round trips)

Reusing existing connections is very desirable (compare HTTP/1.0
with HTTP/1.1)

100% network utilization is impossible (congestion sawtooth peaks
around 75%)

Use UDP if you want to be ridiculous or greedy—but good luck
actually receiving everything

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 33 / 36



Window scaling

64 KB receiver window is too small for many modern networks
(long/fat pipes)

Can ”scale” window when establishing a connection, up to 1 GB

Requires that we allocate a buffer that large in the OS somewhere

Can be tuned in operating system
(/proc/sys/net/ipv4/tcp window scaling)

Well-tuned networks can be up to ten times faster!

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 34 / 36



Window scaling

64 KB receiver window is too small for many modern networks
(long/fat pipes)

Can ”scale” window when establishing a connection, up to 1 GB

Requires that we allocate a buffer that large in the OS somewhere

Can be tuned in operating system
(/proc/sys/net/ipv4/tcp window scaling)

Well-tuned networks can be up to ten times faster!

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 34 / 36



Nagle’s algorithm

Reduces overhead of sending many small packets in a short time

Say you call write ten times at once, each writing 1 byte
Old TCP: sends 10 packets (each of size 41 bytes = 410 bytes)
Nagle’s algorithm: accumulate writes into one packet (50 bytes)

Good for many situations, but becomes problematic if you don’t want
a delay (e.g. typing interactively)

Disable with sock option TCP NODELAY

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 35 / 36



Nagle’s algorithm

Reduces overhead of sending many small packets in a short time

Say you call write ten times at once, each writing 1 byte
Old TCP: sends 10 packets (each of size 41 bytes = 410 bytes)
Nagle’s algorithm: accumulate writes into one packet (50 bytes)

Good for many situations, but becomes problematic if you don’t want
a delay (e.g. typing interactively)

Disable with sock option TCP NODELAY

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 35 / 36



Learn more

Take CS/ECE 438: Communication Networks

Ben Kurtovic (UIUC) CS 241 Honors: Networking and TCP April 11, 2017 36 / 36


	Introduction
	Motivation
	Guarantees
	Implementation (things to know)
	Conclusion

