|
@@ -20,7 +20,6 @@ |
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
|
# SOFTWARE. |
|
|
# SOFTWARE. |
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
|
|
|
|
from re import sub, UNICODE |
|
|
from re import sub, UNICODE |
|
|
|
|
|
|
|
|
__all__ = ["EMPTY", "EMPTY_INTERSECTION", "MarkovChain", |
|
|
__all__ = ["EMPTY", "EMPTY_INTERSECTION", "MarkovChain", |
|
@@ -34,23 +33,27 @@ class MarkovChain(object): |
|
|
|
|
|
|
|
|
def __init__(self, text): |
|
|
def __init__(self, text): |
|
|
self.text = text |
|
|
self.text = text |
|
|
self.chain = defaultdict(lambda: defaultdict(lambda: 0)) |
|
|
|
|
|
words = sub(r"[^\w\s-]", "", text.lower(), flags=UNICODE).split() |
|
|
|
|
|
|
|
|
self.chain = self._build() |
|
|
|
|
|
self.size = self._get_size() |
|
|
|
|
|
|
|
|
|
|
|
def _build(self): |
|
|
|
|
|
"""Build and return the Markov chain from the input text.""" |
|
|
padding = self.degree - 1 |
|
|
padding = self.degree - 1 |
|
|
|
|
|
words = sub(r"[^\w\s-]", "", self.text.lower(), flags=UNICODE).split() |
|
|
words = ([self.START] * padding) + words + ([self.END] * padding) |
|
|
words = ([self.START] * padding) + words + ([self.END] * padding) |
|
|
for i in range(len(words) - self.degree + 1): |
|
|
|
|
|
last = i + self.degree - 1 |
|
|
|
|
|
self.chain[tuple(words[i:last])][words[last]] += 1 |
|
|
|
|
|
self.size = self._get_size() |
|
|
|
|
|
|
|
|
chain = {} |
|
|
|
|
|
|
|
|
|
|
|
for i in xrange(len(words) - self.degree + 1): |
|
|
|
|
|
phrase = tuple(words[i:i+self.degree]) |
|
|
|
|
|
if phrase in chain: |
|
|
|
|
|
chain[phrase] += 1 |
|
|
|
|
|
else: |
|
|
|
|
|
chain[phrase] = 1 |
|
|
|
|
|
return chain |
|
|
|
|
|
|
|
|
def _get_size(self): |
|
|
def _get_size(self): |
|
|
"""Return the size of the Markov chain: the total number of nodes.""" |
|
|
"""Return the size of the Markov chain: the total number of nodes.""" |
|
|
size = 0 |
|
|
|
|
|
for node in self.chain.itervalues(): |
|
|
|
|
|
for hits in node.itervalues(): |
|
|
|
|
|
size += hits |
|
|
|
|
|
return size |
|
|
|
|
|
|
|
|
return sum(self.chain.itervalues()) |
|
|
|
|
|
|
|
|
def __repr__(self): |
|
|
def __repr__(self): |
|
|
"""Return the canonical string representation of the MarkovChain.""" |
|
|
"""Return the canonical string representation of the MarkovChain.""" |
|
@@ -65,20 +68,21 @@ class MarkovChainIntersection(MarkovChain): |
|
|
"""Implements the intersection of two chains (i.e., their shared nodes).""" |
|
|
"""Implements the intersection of two chains (i.e., their shared nodes).""" |
|
|
|
|
|
|
|
|
def __init__(self, mc1, mc2): |
|
|
def __init__(self, mc1, mc2): |
|
|
self.chain = defaultdict(lambda: defaultdict(lambda: 0)) |
|
|
|
|
|
self.mc1, self.mc2 = mc1, mc2 |
|
|
self.mc1, self.mc2 = mc1, mc2 |
|
|
c1 = mc1.chain |
|
|
|
|
|
c2 = mc2.chain |
|
|
|
|
|
|
|
|
|
|
|
for word, nodes1 in c1.iteritems(): |
|
|
|
|
|
if word in c2: |
|
|
|
|
|
nodes2 = c2[word] |
|
|
|
|
|
for node, count1 in nodes1.iteritems(): |
|
|
|
|
|
if node in nodes2: |
|
|
|
|
|
count2 = nodes2[node] |
|
|
|
|
|
self.chain[word][node] = min(count1, count2) |
|
|
|
|
|
|
|
|
self.chain = self._build() |
|
|
self.size = self._get_size() |
|
|
self.size = self._get_size() |
|
|
|
|
|
|
|
|
|
|
|
def _build(self): |
|
|
|
|
|
"""Build and return the Markov chain from the input chains.""" |
|
|
|
|
|
c1 = self.mc1.chain |
|
|
|
|
|
c2 = self.mc2.chain |
|
|
|
|
|
chain = {} |
|
|
|
|
|
|
|
|
|
|
|
for phrase in c1: |
|
|
|
|
|
if phrase in c2: |
|
|
|
|
|
chain[phrase] = min(c1[phrase], c2[phrase]) |
|
|
|
|
|
return chain |
|
|
|
|
|
|
|
|
def __repr__(self): |
|
|
def __repr__(self): |
|
|
"""Return the canonical string representation of the intersection.""" |
|
|
"""Return the canonical string representation of the intersection.""" |
|
|
res = "MarkovChainIntersection(mc1={0!r}, mc2={1!r})" |
|
|
res = "MarkovChainIntersection(mc1={0!r}, mc2={1!r})" |
|
|